

Neutrino Mass and Dark Matter from B-L Breaking

Toshinori MATSUI¹

in collaboration with Shinya KANEMURA¹, Hiroaki SUGIYAMA²

¹University of Toyama, ²Kyoto Sangyo University

Phys. Rev. D 90, 013001 (2014)

In This Talk,

- We discuss gauged U(1)_{B-L} model.
- It is possible to explain tiny neutrino masses and dark matter (DM) from type-I like seesaw diagram.
- In our model, $U(1)_{B-L}$ is free from anomaly.
- Constraints from neutrino oscillation data, LFV search, DM abundance, and DM direct search can be satisfied.
- New particle masses are in the TeV-scale.

Tiny Neutrino Masses

- The standard model (SM) is successful.
- Neutrinos are massless in SM.
- But! Neutrinos have tiny masses. $m_{\nu} \simeq 0.1 {\rm eV}$
- What is the origin of neutrino masses?

Tiny Neutrino Masses

- The standard model (SM) is successful.
- Neutrinos are massless in SM.
- But! Neutrinos have tiny masses. $m_{\nu} \simeq 0.1 {\rm eV}$
- What is the origin of neutrino masses?

Introduction Model Constraints Phenomenology

TeV-scale Loop Suppression Scenario

Radiative seesaw models with Z₂ symmetry L. M. Krauss, S. Nasri, M. Trodden, PRD 67 085002 (2003)
 E. Ma, PRD 73 077301 (2006)
 M. Aoki, S. Kanemura, O. Seto, PRL 102 051805 (2009)

⇒ We can explain neutrino masses and DM!

Oct. 28, 2014 KIAS_Workshop

Toshinori MATSUI [Univ. of TOYAMA]

Questions

- What is the origin of the Majorana mass term of right handed neutrinos ν_R ?
- What is the origin of the artificial Z₂ symmetry?

\Rightarrow We consider gauged U(1)_{B-L} model.

- In previous study, they explain the origin of Majorana masses and DM stability with U(1)_{B-L}.
- But, <u>additional new particles</u> are required to cancel anomaly.

⇒We construct an improved anomaly-free model.

- B-L charge assignments x
- Determination of (N_{vR}, N_{ψ}) Anomaly free conditions

- B-L charge assignments x
- Determination of (N_{vR}, N_{ψ}) Anomaly free conditions

 \rightarrow We take $(N_{vR}, N_{\psi}) = (1, 4)$ for $x = \frac{\sqrt{3} - 1}{3}$ as an example.

Introduction Model Constraints Phenomenology

U(1)_{B-L} Symmetry Breaking $v_{\sigma} = \sqrt{2} \left< \sigma^0 \right>$

• B-L gauge mass is given by characteristic charge.

$$m_{Z'} = \frac{2}{3}g_{\mathrm{B-L}}v_{\sigma}$$
 (\leftarrow B-L charge of σ : 2/3)

• Yukawa interactions:

$$\mathcal{L}_{\text{Yukawa}} = \mathcal{L}_{\text{SM-Yukawa}} - \underbrace{(y_R)_a \overline{(\nu_R)_a} (\nu_R)_a^c (\sigma^0)^*}_{- \underline{h_{ia}} \overline{(\psi_L)_i} (\nu_R)_a s^0 - \underline{f_{\ell i}} \overline{L_\ell} (\psi_R)_i \tilde{\eta} + \text{h.c.}$$

 $\Rightarrow \mathcal{U}(1)_{B-L} explain the origin of masses of a Majarana neutrino <math>\nu_R$ and singlet-fermions ψ_i !

Radiative Type-I Seesaw

 Light Majorana neutrino mass term is generated by the loop suppressed Dirac mass term
 & TeV-scale v_R.

⇒ We can explain tiny neutrino masses!

Benchmark

• This parameter set satisfy neutrino oscillation data, LFV search, DM abundance, and DM direct search!

 $f_{\ell i} = \begin{pmatrix} 0.0178686 & -0.0248746 & -0.019737 & 0.0255808 \\ -0.0182223 & 0.0110461 & 0.0129624 & -0.00818099 \\ 0.0140402 & -0.00598335 & -0.00904845 & 0.00222417 \end{pmatrix}$ $m_R = 250 \text{GeV} \qquad h_i = (0.7 \ 0.8 \ 0.9 \ 1)^T$ $(m_{\psi_1}, m_{\psi_2}, m_{\psi_3}, m_{\psi_4}) = (650, 750, 850, 950) \text{GeV}$ $(m_h, m_H) = (125, 1000) \text{GeV} \ \cos \theta = 1$ $(m_{\mathcal{H}_1}, m_{\mathcal{H}_2}, m_{\eta^{\pm}}) = (60, 450, 420) \text{GeV} \ \cos \theta' = 0.05$ $\mathcal{H}_1 \simeq s$ $\Rightarrow \text{New particle masses are in the TeV-scale!}$

Lepton Flavor Violation

 \Rightarrow Yukawa coupling $f_{\ell i}$ can satisfy LFV constraints!

Fermion DM scenario is excluded!

\Rightarrow There is no value of v_{σ} satisfying two constraints.

Introduction Model Constraints Phenomenology

U(1)_{B-L}charged scalar should be DM! (个Singlet field under the SM gauge group)

• <u>Relic abundance</u> \rightarrow Coupling is independent of v_{σ} .

 $\Omega_c h^2 = 0.1199 \pm 0.0027$ Planck, arXiv: 1303.5076

- <u>Direct search</u> $\mathcal{H}_{1}^{0} \longrightarrow \mathcal{H}_{1}^{0}$ $Z' \longrightarrow N$ $\mathcal{H}_{1}^{0} \longrightarrow \mathcal{H}_{1}^{0}$ $\sigma_{SI} = \left(\frac{\sqrt{3}+2}{3}\right)^{2} \left(\frac{3}{2v_{\sigma}}\right)^{4} \frac{m_{\mathcal{H}_{1}}^{2} m_{N}^{2}}{\pi (m_{\mathcal{H}_{1}} + m_{N})^{2}}$ $\sigma_{exp} = 9.2 \times 10^{-46} \text{ cm}^{2}$ LUX, PRL 112 091303 (2014)
- \Rightarrow To satisfy direct search, we need $v_{\sigma} > 31 \,\mathrm{TeV}$.

Collider Phenomenology

⇒ We can distinguish our model from others!

Conclusions

- U(1)_{B-L} model can explain tiny neutrino masses and dark matter by gauge symmetry breaking w/o artificial Z₂ symmetry.
- Additionally, the origin of Majorana mass term can be explained.
- We construct an anomaly-free model at the TeV-scale.
- In our model, fermion DM is excluded.
- We can distinguish our model from others by observing v_R.

Oct. 28, 2014 KIAS_Workshop

Back Up

Anomaly Cancelation of U(1)_{B-L}

• We want to construct radiative type-I like seesaw model.

	σ^0	$(u_R)_i$	$(\psi_L)_i$	$(\psi_R)_i$	$\eta = \left(\begin{array}{c} \eta \\ \eta^0 \end{array} \right)$	s^0
SU(2) _L	1	1	1	1	2	1
U(1) _Y	0	0	0	0	$\frac{1}{2}$	0
U(1) _{B-L}	$\frac{2}{3}$	$-\frac{1}{3}$	$x + \frac{2}{3}$	x	<i>x</i> + 1	<i>x</i> + 1

- We know B-L of SM is $(B-L)_{SM} = 3$, $(B-L)_{SM}^3 = 3$.
- We can get anomaly cancelation (a) conditions from these constraints.

 (ψ_R)

 σ

 ψ_L

Neutrino Masses

- When we write $(m_{\nu})_{\ell\ell'} = f_{\ell i} I_{ij} (f^T)_{j\ell'}$, I_{ij} can be diagonalized by U_{ij} . $U^{-1}I(U^T)^{-1} = \text{diag}(X_1, X_2, X_3, X_4)$
- Then, Yukawa matrix $f_{\ell i}$ can be associated with values of neutrino oscillation! $(m_{\nu})_{\ell \ell'} = U_{\text{MNS}}^* m_{\nu}^{\text{diag}} U_{\text{MNS}}^{\dagger} = (f U) I^{\text{diag}} (f U)^T$ $\left[f = U_{\text{MNS}}^* \left(\begin{array}{cc} \sqrt{\frac{m_1}{X_1}} & 0 & 0 & 0 \\ 0 & \sqrt{\frac{m_2}{X_2}} & 0 & 0 \\ 0 & 0 & \sqrt{\frac{m_3}{X_3}} & 0 \end{array} \right) U^{-1} \right]$

Fermion DM scenario is excluded!

Oct. 28, 2014 KIAS_Workshop

Introduction Model Constraints Phenomenology

Constraints on Scalar DM \mathcal{H}_1^0

Oct. 28, 2014 KIAS_Workshop

Toshinori MATSUI [Univ. of TOYAMA]

Constraints from Collider Experiments

- LEP-II bound: $v_{\sigma}\gtrsim 10.5\,{
 m TeV}$ prd, 74 033011 (2006)
- Z' search bound: $m_{Z'}\gtrsim 2.86\,{
 m TeV}$ Atlas-conf-2013-017

Predictions of Branching Ratio

• Branching ratios of Z' decays: $BR(Z' \rightarrow q/\overline{q/y}) = 0.18$

									$\psi \psi i$	0.10
$q\overline{q}$	$\ell \overline{\ell}$	$v_L \overline{v_L}$	$v_R \overline{v_R}$	$\Psi_1\overline{\Psi_1}$	$\Psi_2\overline{\Psi_2}$	$\Psi_3\overline{\Psi_3}$	$\Psi_4\overline{\Psi_4}$	$s_1^0(s_1^0)^*$	$s_2^0(s_2^0)^*$	$\eta^+\eta^-$
0.21	0.32	0.16	0.0059	0.046	0.045	0.044	0.043	0.041	0.038	0.039
									-	

• Branching ratios of v_R decays:

$W^+\ell^- + W^-\ell^+$	$Z\nu_L + Z\overline{\nu_L}$	$h^0 u_L + h^0\overline{ u_L}$	$H^0 u_L + H^0\overline{ u_L}$
0.56	0.28	0.16	0